SCT/Atlas ROD Test Stand

Wisconsin SCT/Pixel ROD Group:

K. Dao
D. Fasching
R. Jared
J. Joseph
M. Nagel
L. Stromburg
L. Tomasek

December 17, 1999



SCT/Atlas ROD Test Stand

The SCT/ Atlas ROD (Readout Driver) Test Stand is intended to provide the
functionality to test and debug the standal one ROD

The test will be done with a VME crate, PC with National Instrunments
interface (VME-MXI -2 hardware + LabW ndows software).

Later phases of the testing will require the Back of Crate (BOC) card and
Timng Interface Module (TIM.

Ref erence: ROD di agranmati c nodel (debug pat h)and ROD Controller — see Mark's
tal k.

Testing procedures of the standalone ROD

Main tests (internal connectivity):

e wite to input then read from output FIFO of the ROD Controller

e wite to an object then read the sane object
(ie. ROD input nenories, debug. menories, event fragnent builder FIFO
DSP ext. nenori es)

e wite to an object then read fromthe downstream obj ect
(function test of the decoder, gatherer, data director .)

Tests of the external signals:

e control |inks

- | oopback cable to ROD i nput nenories

e data |inks

- input links to ROD ->l oopback cabl e
(ie. test of the backplane interface connector
one nenory plays while the other records)

- output links fromROD (input to S-Iink, BQOC
- >l oopback cabl e



Later tests of the other conponents connected with ROD:

e BOC(Back of Crate)

— check that we can read/wite to config. registers

e TIM(Timng Interface Mdule)

- conmmuni cates to ROD over special backpl ane
- a sophisticated stage of the test stand will be needed to test TIM ROD.
(test of the fast commands L1A, BCR, ECR, CALStrobe etc.)

ROD Software Architecture

ROD Controll er code

/ ROD Controller specific code\

Decoding primitives and
executing instructions

/IEOQE (common to all platforms) \

ROD hardware parameters
+

memory partitioning parameters

+
Qscription(structure) of primitives

“Driver” level — code to build
primitives

User specific applications code
K (Test stand, RCC) /

User code
(test stand, RCC)




The software will consist of ROD Controller software prinitives,
a shell of primtives that comunicate over VME to the ROD and hi gher
| evel software.

The shell is intended to provide a conmuni cation protocol that wll
hide the details of the interface to the ROD fromthe VME crate.

It nmeans that ROD actions will be driven by lists of conmands and
ROD will look like a Iist processing engine.

The higher |evel software resides on the PC (test stand) or crate
processor (ROD Crate Controller — RCC

The desire is to make the software developed in the PC or crate
processor |argely interchangeable.

A. Devel opnent of software for use in all environnents

Core code
- conmon to ROD Controller and any user platform (crate processor, PC.

* Rod hardware description
- internal menory register addresses
- menory spaces/partitioning

* Primitives description
- names and paraneter spaces

- conmon to crate processor/PC but not to ROD Controller
(in the test stand software should be included all basic
RCC functions necessary for testing procedures)

Code to build primtives ("driver" |evel code)

B. Devel opnent of an application on the top of the Core code - User specific
code

Test of ROD har dwar e

- conm ssioning in short term
- fixing boards in longer term

R'Wnenories allow for testing isolated | ocations on the board

- software for the testing and initial running of the ROD



Software team and responsibilities

John Hill (Canbridge University)
- is responsible for the RCC(ROD Crate Controller) software
- design of the software layers, finding and descriptions
of the appropriate set of primtives and coding rules
(together with Lukas Tonasek and Danon Faschi ng)
Lukas Tonasek
- first version of the “Core” and all the software for
Test Stand (PC) plus “primtive decodi ng” software for
ROD Control I er
Damon Faschi ng
- software for ROD Controller (and back end DSPs)

lowa - ?

Time plan

The basic software for "standal one" ROD testing should
be ready till March 2000.



